TABLE OF CONTENTS

FOREWORD
iii

PREFACE
iv

SECTION I
PLANT PATHOLOGY

1.

1.0 Field Sampling

1.1.1 Guideline for Pathological Sample Reception, Registration, Examinations, Identifications and Recording of Results
2
1.1.2 Collecting Plant Specimens
2
1.1.3 Collecting Soil and Plant Samples for Nematodes determination
3
1.1.4 General Procedures on Weed Sample Collection, Processing, and Mailing for Identification
4
1.1.5 Sample Reception, Registration, Examination, Identification and Recording of Results
5

1.2 Culture Media

1.2.1 Culture Media Preparation
6
1.2.2 Broth Flasks or Tubes
7
1.2.3 Slants Tubes
7
1.2.4 Culture Media Recipe Stains and Buffers
8
1.2.5 Culture Media
8
1.2.6 Staining and Cleaning Agents
15
1.2.7 Phosphate Buffer (Cruickshank, 1965)
16

1.3 Sterilization Methods

1.3.1 Hot Air Sterilization
17
1.3.2 Surface Sterilization
17
1.3.2.1 70% Ethanol
17
1.3.2.2 Sodium or calcium hypochlorite (NaOC1 or CaOC1)
18

1.4 Pathological Laboratory Analysis

1.4.1 Culturing Methods
18
1.4.1.1 Moist incubation
18
1.4.1.2 Slide Cultures
19
1.4.2 Isolations
20
1.4.2.1 General Aseptic Technique
20
1.4.2.2 Aseptic Isolation of Pathogens from Plant Material
1.4.3 Soil and Plant Tissue Extraction of Plant Parasitic Nematode
1.4.3.1 Extracting Nematodes from Soil Samples using Modified Baermann-funnel Method
1.4.3.2 Extracting Nematodes from Plant Tissues
1.4.3.3 Teasing Out (Ayoub 1977)
1.4.3.4 Baermann-funnel Method (Baermann 1917)
1.4.4 Detecting Presence of Pathogens within Plant Material
1.4.4.1 Leaf Tissue
1.4.4.2 Fine Roots and Other Non-woody Tissue (Phillips and Hayman, 1970)
1.4.5 Plant Tissue Assessment
1.4.5.1 Vesicular-Arbuscular Mycorrhiza (VAM)
1.4.6 Soil Fungi and Bacteria Assays
1.4.7 Total Microbial Activity in Soil and Litter using Fluorecein Diacetate (FDA) Hydrolysis Method (John schnurer and Thomas Rosswal, 1982)

1.5 Microbial Growth Measurements and Spore Counts
1.5.1 Fungal Biomass Accumulation
1.5.2 Fungal Growth Responses
1.5.3 Total Spore Counts using Hemacytometer

SECTION II
ENTOMOLOGY

2.0 GENERAL GUIDELINES ON PROCEDURES ON INSECT PEST SAMPLE COLLECTION, PACKAGING AND MAILING

2.1.1 Packaging Insect Damaged Specimens
2.1.2 Packaging Insect Specimens
2.1.3 Mailing Specimens by Stakeholders
2.1.4 Plant Pest Reception, Registration and Recording
2.1.5 Laboratory Examination

2.2 Laboratory Insect Sample Processing Identification and Preservation
2.2.1 Killing and Preserving of Different Arthropods
2.2.1.1 Mites and Most Insects
2.2.1.2 Parasitic Wasps (Hymenoptera)
2.2.1.3 Aphids and Thrips
2.2.1.4 Larvae

vi
2.2.2 Storage of Specimens 38
2.2.3 Temporary Preservation by Refrigeration and Freezing 38
2.2.4 Permanent collection, Mites, Aphids and Thrips, 38
2.2.5 Preparation of Killing and Preservation Agents 38
2.2.5.1 Liquid killing and preservation agents 39
2.2.5.2 Gaseous Killing Agents 39
2.2.6 Dry preservation of different arthropods 39
2.2.6.1 Dry Preservation 39
2.2.6.2 Insect Mounting and Preservation and Identification 40
2.2.6.3 Direct Pinning 40
2.2.6.4 Double Mounts 41
2.2.6.5 Riker Mounts 41
2.2.7 Labeling of Mounts 42
2.2.8 Placing the Labels 42
2.2.9 Identification Labels 43

2.3 Field Sampling Procedures for Various Insect Pests 43
2.3.1 Tea Mites (Red crevice mite, Red spider mite and Purple mite) 43
2.3.1.1 The mite Sampling and Counting 44
2.3.1.2 Mite Extraction on Leaf Sample Using 50% Ethanol 44
2.3.1.3 Scale Insects 45
2.3.1.4 Parasitoid Extraction from Scale Insects 46
2.3.1.4 Tea Mosquito Bug 46

2.4. Screening of Tea Clone For Resistance/ Susceptibility to Tea Pests 47
(Greenhouse and Field Based)

2.5 Pesticide Efficacy Screening (Greenhouse and Field Based) 47

2.6 General Laboratory Practices in the Preparation of Chemical Treatments,
Storage and Operation of Spray Pumps 50

APPENDIX I 53
Microscopy Technique. 53

BIBLIOGRAPHY 55